U
    5AfH                     @   sn   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZG dd	 d	eZG d
d deZdS )zRemBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                       s&   e Zd ZdZdZd fdd	Z  ZS )RemBertConfiga  
    This is the configuration class to store the configuration of a [`RemBertModel`]. It is used to instantiate an
    RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the RemBERT
    [google/rembert](https://huggingface.co/google/rembert) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 250300):
            Vocabulary size of the RemBERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`]. Vocabulary size of the model.
            Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of
            [`RemBertModel`].
        hidden_size (`int`, *optional*, defaults to 1152):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 18):
            Number of attention heads for each attention layer in the Transformer encoder.
        input_embedding_size (`int`, *optional*, defaults to 256):
            Dimensionality of the input embeddings.
        output_embedding_size (`int`, *optional*, defaults to 1664):
            Dimensionality of the output embeddings.
        intermediate_size (`int`, *optional*, defaults to 4608):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
            The dropout ratio for the attention probabilities.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the classifier layer when fine-tuning.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`RemBertModel`] or [`TFRemBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.

    Example:

    ```python
    >>> from transformers import RemBertModel, RemBertConfig

    >>> # Initializing a RemBERT rembert style configuration
    >>> configuration = RemBertConfig()

    >>> # Initializing a model from the rembert style configuration
    >>> model = RemBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zrembert                  gelu        皙?      {Gz?-q=Tr   8  9  c                    s   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
| _|| _|| _|| _|| _|| _d| _d S )N)pad_token_idbos_token_ideos_token_idF)super__init__
vocab_sizeinput_embedding_sizeoutput_embedding_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probclassifier_dropout_probinitializer_rangetype_vocab_sizelayer_norm_eps	use_cacheZtie_word_embeddings)selfr   r"   r#   r$   r   r    r%   r&   r'   r(   r)   r!   r+   r*   r,   r-   r   r   r   kwargs	__class__ U/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/rembert/configuration_rembert.pyr   b   s$    zRemBertConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   Tr   r   r   )__name__
__module____qualname____doc__Z
model_typer   __classcell__r2   r2   r0   r3   r      s,   C                   r   c                   @   s@   e Zd Zeeeeeef f dddZeedddZ	dS )RemBertOnnxConfig)returnc                 C   s<   | j dkrdddd}n
ddd}td|fd|fd	|fgS )
Nzmultiple-choicebatchchoicesequence)r      r   )r   r>   Z	input_idsZattention_maskZtoken_type_ids)Ztaskr   )r.   Zdynamic_axisr2   r2   r3   inputs   s    

zRemBertOnnxConfig.inputsc                 C   s   dS )Ng-C6?r2   )r.   r2   r2   r3   atol_for_validation   s    z%RemBertOnnxConfig.atol_for_validationN)
r4   r5   r6   propertyr   strintr?   floatr@   r2   r2   r2   r3   r9      s    r9   N)r7   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr4   loggerr   r9   r2   r2   r2   r3   <module>   s   
r