U
    5Af                     @   s:   d Z ddlmZ ddlmZ eeZG dd deZdS )zMistral model configuration   )PretrainedConfig)loggingc                       s,   e Zd ZdZdZdgZd fdd	Z  ZS )MistralConfiga  
    This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
    Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.

    [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
    [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MistralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import MistralModel, MistralConfig

    >>> # Initializing a Mistral 7B style configuration
    >>> configuration = MistralConfig()

    >>> # Initializing a model from the Mistral 7B style configuration
    >>> model = MistralModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZmistralZpast_key_values }      8         Nsilu   {Gz?ư>T      F     @        c                    s   || _ |	| _|| _|| _|| _|| _|| _|p4|| | _|d krD|}|| _|| _	|
| _
|| _|| _|| _|| _t jf ||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings)
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windowhead_dimnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r   r    r!   r"   r   r   r   r   r#   r   r$   kwargs	__class__ U/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/mistral/configuration_mistral.pyr&   e   s2    zMistralConfig.__init__)r   r   r   r   r   r	   Nr
   r   r   r   TNr   r   Fr   r   r   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer&   __classcell__r+   r+   r)   r,   r      s.   I                   r   N)	r0   Zconfiguration_utilsr   utilsr   Z
get_loggerr-   loggerr   r+   r+   r+   r,   <module>   s   
