U
    4Af                      @   s   d Z ddlZddlmZmZmZ ddlmZ ddlm	Z	 e	
eZG dd deZG d	d
 d
eZG dd deZG dd deZG dd deZdS )zFLAVA model configurations    N)AnyDictUnion   )PretrainedConfig)loggingc                       sf   e Zd ZdZdZdeeeeeeeeeeeeeeed fddZe	e
eejf ddddZ  ZS )FlavaImageConfiga  
    This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
    FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        mask_token (`bool`, *optional*, defaults to `True`):
            Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
        vocab_size (`int`, *optional*, defaults to 8192):
            Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
            Image Modeling) loss for FLAVA.

    Example:

    ```python
    >>> from transformers import FlavaImageConfig, FlavaImageModel

    >>> # Initializing a FlavaImageModel with  style configuration
    >>> configuration = FlavaImageConfig()

    >>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
    >>> model = FlavaImageModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_image_model         gelu        {Gz?-q=      r   T    )hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_bias
mask_token
vocab_sizec                    sl   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S N)super__init__r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   )selfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   kwargs	__class__ Q/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/flava/configuration_flava.pyr$   Z   s     zFlavaImageConfig.__init__r   pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typeflavaimage_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.Z_set_token_in_kwargsZget_config_dictgethasattrr.   loggerwarning	from_dictclsr,   r&   Zconfig_dictr)   r)   r*   from_pretrained   s    
 z FlavaImageConfig.from_pretrained)r	   r
   r
   r   r   r   r   r   r   r   r   r   TTr   __name__
__module____qualname____doc__r.   intfloatboolr$   classmethodr   strosPathLiker<   __classcell__r)   r)   r'   r*   r      sH   <               %r   c                       sf   e Zd ZdZdZdeeeeeeeeeeeeeeed fddZ	e
eeejf ddddZ  ZS )FlavaTextConfigaC  
    This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
    FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FlavaTextModel`].
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
            text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
            used similar to RoBERTa.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.

    Example:

    ```python
    >>> from transformers import FlavaTextConfig, FlavaTextModel

    >>> # Initializing a FlavaTextModel with  style configuration
    >>> configuration = FlavaTextConfig()

    >>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
    >>> model = FlavaTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_text_model:w        absoluter	   r
   r   r   r   r   r   r   T)r!   type_vocab_sizemax_position_embeddingsposition_embedding_typer   r   r   r   r   r   r   r   r   pad_token_idr   c                    sl   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S r"   )r#   r$   r!   rO   rP   rQ   r   r   r   r   r   r   r   r   r   r   rR   )r%   r!   rO   rP   rQ   r   r   r   r   r   r   r   r   r   rR   r   r&   r'   r)   r*   r$      s     zFlavaTextConfig.__init__r   r+   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr.   r/   text_configr1   r2   r3   r4   r:   r)   r)   r*   r<     s    
 zFlavaTextConfig.from_pretrained)rK   rL   rM   rN   r	   r
   r
   r   r   r   r   r   r   r   T)r>   r?   r@   rA   r.   rB   rF   rC   rD   r$   rE   r   rG   rH   r<   rI   r)   r)   r'   r*   rJ      sH   G               %rJ   c                       s^   e Zd ZdZdZdeeeeeeeeeeed fddZe	e
eejf ddddZ  ZS )FlavaMultimodalConfiga  
    This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
    an FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        use_cls_token (`bool`, *optional*, defaults to `True`):
            Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.


    Example:

    ```python
    >>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel

    >>> # Initializing a FlavaMultimodalModel with  style configuration
    >>> configuration = FlavaMultimodalConfig()

    >>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
    >>> model = FlavaMultimodalModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_multimodal_modelr	      r
   r   r   r   r   r   T)r   r   r   r   r   r   r   r   r   r   use_cls_tokenc                    sT   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S r"   )r#   r$   r   r   r   r   r   r   r   r   r   r   rV   )r%   r   r   r   r   r   r   r   r   r   r   rV   r&   r'   r)   r*   r$   K  s    zFlavaMultimodalConfig.__init__r   r+   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr.   r/   multimodal_configr1   r2   r3   r4   r:   r)   r)   r*   r<   h  s    
 z%FlavaMultimodalConfig.from_pretrained)r	   rU   r
   r   r   r   r   r   r   TTr=   r)   r)   r'   r*   rT     s8   4           rT   c                	       sR   e Zd ZdZdeeeeeeed	 fd
dZeee	e
jf ddddZ  ZS )FlavaImageCodebookConfigZflava_image_codebook   r   rL      r   Tr   )
num_groupsinput_channelsnum_blocks_per_groupr   r!   freezer   c           	         s<   t  jf | || _|| _|| _|| _|| _|| _|| _d S r"   )	r#   r$   r[   r\   r]   r   r!   r^   r   )	r%   r[   r\   r]   r   r!   r^   r   r&   r'   r)   r*   r$     s    z!FlavaImageCodebookConfig.__init__r   r+   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr.   r/   image_codebook_configr1   r2   r3   r4   r:   r)   r)   r*   r<     s    
 z(FlavaImageCodebookConfig.from_pretrained)rY   r   rL   rZ   r   Tr   )r>   r?   r@   r.   rB   rC   r$   rE   r   rF   rG   rH   r<   rI   r)   r)   r'   r*   rX   {  s&   /       rX   c                       s   e Zd ZdZdZdeeef eeef eeef eeef ee	ee
e	e	ee	e	e	e	e	e	e
e
e
d fddZeeeeedddZ  ZS )FlavaConfiga  
    [`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
    instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
    and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
    that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaTextConfig`].
        image_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaImageConfig`].
        multimodal_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and image projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original FLAVA/CLIP
            implementation.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        ce_ignore_index (`int`, *optional*, defaults to -100):
            Cross entropy index to ignore.
        mim_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
        mlm_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
        global_contrastive_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to global contrastive cross-alignment loss.
        itm_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to image-text matching multimodal loss.
        mmm_image_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MMM loss's image part.
        mmm_text_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MMM loss's text part.
        global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
            Whether to use global backpropgation through all workers in contrastive loss.
        skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
            Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
        return_loss (`bool`, *optional*, defaults to `True`):
            Whether to return loss or not

        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining

    >>> # Initializing a FlavaConfig with style configuration
    >>> configuration = FlavaConfig()

    >>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
    >>> model = FlavaModel(configuration)
    >>> model_pre = FlavaForPreTraining(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    >>> configuration_pre = model_pre.config
    ```
    r/   Nr	   r   T/L
F@r         ?)r0   rS   rW   r_   r   r   projection_diminit_codebooklogit_scale_init_valuer   ce_ignore_index
mim_weight
mlm_weightglobal_contrastive_weight
itm_weightmmm_image_weightmmm_text_weightglobal_backprop_contrastive skip_unmasked_multimodal_encoderreturn_lossc           !         s  | dd }| dd }| dd }| dd }t jf | |d k	r|d krRi }tf | }| D ]V\}}||krh||| krh|dkrh||krd| d| d}nd	| d
}t| qh|| |d k	r|d kri }t	f | }d|krdd |d  D |d< | D ]`\}}||kr||| kr|dkr||krbd| d| d}nd| d
}t| q|| |d k	r |d kri }t
f | }| D ]`\}}||kr||| kr|dkr||krd| d| d}nd| d
}t| q|| |d k	r|d kr8i }tf | } |  D ]`\}}||krN||| krN|dkrN||krd| d| d}nd| d
}t| qN||  |d kri }td |d kri }td |d kri }td |d kri }td t	f || _tf || _t
f || _tf || _|| _|| _|| _|| _|
| _|	| _d| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _ d S )Ntext_config_dictimage_config_dictmultimodal_config_dictimage_codebook_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zk`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]\}}t ||qS r)   )rF   ).0keyvaluer)   r)   r*   
<dictcomp>`  s     z(FlavaConfig.__init__.<locals>.<dictcomp>zs` is found in both `image_config_dict` and `image_config` but with different values. The value `image_config_dict["zn`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. The value `image_config["z` is found in both `multimodal_config_dict` and `multimodal_config` but with different values. The value `multimodal_config_dict["z}`multimodal_config_dict` is provided which will be used to initialize `FlavaMultimodalConfig`. The value `multimodal_config["z` is found in both `image_codebook_config_dict` and `image_codebook_config` but with different values. The value `image_codebook_config_dict["z`image_codebook_config_dict` is provided which will be used to initialize `FlavaImageCodebookConfig`. The value `image_codebook_config["zR`image_config` is `None`. initializing the `FlavaImageConfig` with default values.zP`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.z\`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.zc`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values.rc   )!popr#   r$   rJ   to_dictitemsr7   infoupdater   rT   rX   r0   rS   rW   r_   rd   re   r   r   r   rf   Zinitializer_factorrg   rh   ri   rj   rk   rl   rm   rn   ro   rp   )!r%   r0   rS   rW   r_   r   r   rd   re   rf   r   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   r&   rq   rr   rs   rt   Z_text_config_dictrw   rx   messageZ_image_config_dictZ_multimodal_config_dictZ_image_codebook_config_dictr'   r)   r*   r$     s    





"





















zFlavaConfig.__init__r0   rS   rW   r_   c                 K   s(   | f |  |  |  |  d|S )a&  
        Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
        configuration, flava multimodal model and flava codebook model configuration.

        Returns:
            [`FlavaConfig`]: An instance of a configuration object
        r   )r{   )r;   r0   rS   rW   r_   r&   r)   r)   r*   from_configs  s    zFlavaConfig.from_configs)NNNNr	   r   r	   Tra   r   rb   rc   rc   rc   rc   rc   rc   TTT)r>   r?   r@   rA   r.   r   rF   r   rB   rC   rD   r$   rE   r   rJ   rT   rX   r   rI   r)   r)   r'   r*   r`     sf   E                    



 Kr`   )rA   rG   typingr   r   r   Zconfiguration_utilsr   utilsr   Z
get_loggerr>   r7   r   rJ   rT   rX   r`   r)   r)   r)   r*   <module>   s   
w gU