U
    4A·f…  ã                   @   s:   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZdS )zREALM model configuration.é   )ÚPretrainedConfig)Úloggingc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚRealmConfiga+  
    This is the configuration class to store the configuration of

    1. [`RealmEmbedder`]
    2. [`RealmScorer`]
    3. [`RealmKnowledgeAugEncoder`]
    4. [`RealmRetriever`]
    5. [`RealmReader`]
    6. [`RealmForOpenQA`]

    It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
    [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
            [`RealmReader`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        retriever_proj_size (`int`, *optional*, defaults to 128):
            Dimension of the retriever(embedder) projection.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_candidates (`int`, *optional*, defaults to 8):
            Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
            [`RealmKnowledgeAugEncoder`], or [`RealmReader`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        span_hidden_size (`int`, *optional*, defaults to 256):
            Dimension of the reader's spans.
        max_span_width (`int`, *optional*, defaults to 10):
            Max span width of the reader.
        reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
            The epsilon used by the reader's layer normalization layers.
        reader_beam_size (`int`, *optional*, defaults to 5):
            Beam size of the reader.
        reader_seq_len (`int`, *optional*, defaults to 288+32):
            Maximum sequence length of the reader.
        num_block_records (`int`, *optional*, defaults to 13353718):
            Number of block records.
        searcher_beam_size (`int`, *optional*, defaults to 5000):
            Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
            *reader_beam_size*.

    Example:

    ```python
    >>> from transformers import RealmConfig, RealmEmbedder

    >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
    >>> configuration = RealmConfig()

    >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration
    >>> model = RealmEmbedder(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Úrealmé:w  é   é€   é   é   é   Úgelu_newçš™™™™™¹?é   é   ç{®Gáz”?çê-™—q=é   é
   çü©ñÒMbP?é   é@  éöÂË éˆ  é   é    c                    sœ   t ƒ jf |||dœ|—Ž || _|| _|| _|| _|| _|| _|| _|| _	|| _
|	| _|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚmax_position_embeddingsÚhidden_sizeÚretriever_proj_sizeÚnum_hidden_layersÚnum_attention_headsÚnum_candidatesÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚtype_vocab_sizeÚlayer_norm_epsÚspan_hidden_sizeÚmax_span_widthÚreader_layer_norm_epsÚreader_beam_sizeÚreader_seq_lenÚnum_block_recordsÚsearcher_beam_size)Úselfr    r"   r#   r$   r%   r&   r'   r(   r)   r*   r!   r,   r+   r-   r.   r/   r0   r1   r2   r3   r4   r   r   r   Úkwargs©Ú	__class__© ú\/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/deprecated/realm/configuration_realm.pyr   o   s,    zRealmConfig.__init__)r   r   r   r	   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r9   r9   r7   r:   r      s6   T                        çr   N)	r>   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr;   Úloggerr   r9   r9   r9   r:   Ú<module>   s   
