U
    4A·fÑ  ã                   @   s    d dl mZ G dd„ deƒZdS )é   )ÚPretrainedConfigc                       s&   e Zd ZdZdZd‡ fdd„	Z‡  ZS )ÚNezhaConfiga­  
    This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Nezha
    [sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, optional, defaults to 21128):
            Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the
            *inputs_ids* passed to the forward method of [`NezhaModel`].
        hidden_size (`int`, optional, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, optional, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, optional, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, optional, defaults to 3072):
            The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, optional, defaults to "gelu"):
            The non-linear activation function (function or string) in the encoder and pooler.
        hidden_dropout_prob (`float`, optional, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, optional, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, optional, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, optional, defaults to 2):
            The vocabulary size of the *token_type_ids* passed into [`NezhaModel`].
        initializer_range (`float`, optional, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, optional, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        classifier_dropout (`float`, optional, defaults to 0.1):
            The dropout ratio for attached classifiers.
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.

    Example:

    ```python
    >>> from transformers import NezhaConfig, NezhaModel

    >>> # Initializing an Nezha configuration
    >>> configuration = NezhaConfig()

    >>> # Initializing a model (with random weights) from the Nezha-base style configuration model
    >>> model = NezhaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZnezhaéˆR  é   é   é   Úgeluçš™™™™™¹?é   é@   é   ç{®Gáz”?çê-™—q=é    é   Tc                    sx   t ƒ jf |||dœ|—Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_id)ÚsuperÚ__init__Ú
vocab_sizeÚhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚ
hidden_actÚintermediate_sizeÚhidden_dropout_probÚattention_probs_dropout_probÚmax_position_embeddingsÚmax_relative_positionÚtype_vocab_sizeÚinitializer_rangeÚlayer_norm_epsÚclassifier_dropoutÚ	use_cache)Úselfr   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r   r   r   r$   Úkwargs©Ú	__class__© ú\/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/deprecated/nezha/configuration_nezha.pyr   @   s     zNezhaConfig.__init__)r   r   r   r   r   r   r	   r	   r
   r   r   r   r   r	   r   r   r   T)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r)   r)   r'   r*   r      s*   9                  ír   N)Ú r   r   r)   r)   r)   r*   Ú<module>   s   