U
    4Afn                     @   s8   d Z ddlZddlmZ ddlmZ G dd deZdS )z(
Image/Text processor class for CLIPSeg
    N   )ProcessorMixin)BatchEncodingc                       sd   e Zd ZdZddgZdZdZd fdd	Zdd	d
Zdd Z	dd Z
edd Zedd Z  ZS )CLIPSegProcessora.  
    Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.

    [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
    [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.

    Args:
        image_processor ([`ViTImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`CLIPTokenizerFast`], *optional*):
            The tokenizer is a required input.
    image_processor	tokenizerZViTImageProcessor)ZCLIPTokenizerZCLIPTokenizerFastNc                    sd   d }d|kr"t dt |d}|d k	r.|n|}|d krBtd|d krRtdt || d S )Nfeature_extractorzhThe `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor` instead.z)You need to specify an `image_processor`.z"You need to specify a `tokenizer`.)warningswarnFutureWarningpop
ValueErrorsuper__init__)selfr   r   kwargsr   	__class__ R/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/clipseg/processing_clipseg.pyr   +   s    
zCLIPSegProcessor.__init__c           	      K   s
  |dkr |dkr |dkr t d|dk	r8|dk	r8t d|dk	rV| j|fd|i|}|dk	rt| j|fd|i|}|dk	r| j|fd|i|}|dk	r|dk	r|j|jd}|S |dk	r|dk	r|j|d< |S |dk	r|S |dk	rd|ji}|S ttf ||dS dS )	a
  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
        the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
                NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
                (C, H, W), where C is a number of channels, H and W are image height and width.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz9You have to specify either text, visual prompt or images.zMYou have to specify exactly one type of prompt. Either text or visual prompt.return_tensors)pixel_valuesconditional_pixel_valuesr   r   )dataZtensor_type)r   r   r   r   r   dict)	r   textZimagesZvisual_promptr   r   encodingZprompt_featuresZimage_featuresr   r   r   __call__=   s4    &
 zCLIPSegProcessor.__call__c                 O   s   | j j||S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder   argsr   r   r   r   r      s    zCLIPSegProcessor.batch_decodec                 O   s   | j j||S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoder   r   r   r   r!      s    zCLIPSegProcessor.decodec                 C   s   t dt | jS )Nzg`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.)r	   r
   r   image_processor_classr   r   r   r   feature_extractor_class   s
    z(CLIPSegProcessor.feature_extractor_classc                 C   s   t dt | jS )Nz[`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.)r	   r
   r   r   r#   r   r   r   r      s
    z"CLIPSegProcessor.feature_extractor)NN)NNNN)__name__
__module____qualname____doc__
attributesr"   Ztokenizer_classr   r   r   r!   propertyr$   r   __classcell__r   r   r   r   r      s   
H
r   )r(   r	   Zprocessing_utilsr   Ztokenization_utils_baser   r   r   r   r   r   <module>   s   