U
    4AfQ                     @   sn   d Z ddlZddlmZ ddlmZ ddlmZ ee	Z
G dd deZG d	d
 d
eZG dd deZdS )zCLIPSeg model configuration    N)Union   )PretrainedConfig)loggingc                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )CLIPSegTextConfiga  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`CLIPSegModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 49406):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 49407):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel

    >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegTextConfig()

    >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_text_model               M   
quick_geluh㈵>        {Gz?      ?       c                    s`   t  jf |||d| || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|| _|	| _d S )N)pad_token_idbos_token_ideos_token_id)super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actinitializer_rangeinitializer_factorattention_dropout)selfr   r   r   r   r   r   r!   r    r$   r"   r#   r   r   r   kwargs	__class__ U/tmp/pip-unpacked-wheel-zw5xktn0/transformers/models/clipseg/configuration_clipseg.pyr   X   s    zCLIPSegTextConfig.__init__r   pretrained_model_name_or_pathreturnc                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )N
model_typeclipsegtext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.Z_set_token_in_kwargsZget_config_dictgethasattrr.   loggerwarning	from_dictclsr,   r&   Zconfig_dictr)   r)   r*   from_pretrainedx   s    
 z!CLIPSegTextConfig.from_pretrained)r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r.   r   classmethodr   strosPathLiker<   __classcell__r)   r)   r'   r*   r      s&   :               r   c                       sD   e Zd ZdZdZd fdd	Zeeee	j
f ddddZ  ZS )CLIPSegVisionConfigaG  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel

    >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegVisionConfig()

    >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_vision_model      r
   r          r   r   r   r   r   c                    sZ   t  jf | || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _d S )N)r   r   r   r   r   r   num_channels
patch_size
image_sizer"   r#   r$   r    r!   )r%   r   r   r   r   rL   rN   rM   r!   r    r$   r"   r#   r&   r'   r)   r*   r      s    zCLIPSegVisionConfig.__init__r   r+   c                 K   s~   |  | | j|f|\}}|ddkr2|d }d|krpt| drp|d | jkrptd|d  d| j d | j|f|S )Nr.   r/   vision_configr1   r2   r3   r4   r:   r)   r)   r*   r<      s    
 z#CLIPSegVisionConfig.from_pretrained)rH   rI   r
   r
   r   rJ   rK   r   r   r   r   r   r=   r)   r)   r'   r*   rG      s"   4            rG   c                       sX   e Zd ZdZdZdddddddgd	d
dddddf fdd	ZeeedddZ	  Z
S )CLIPSegConfiga  
    [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
    instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
        extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
            Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
        reduce_dim (`int`, *optional*, defaults to 64):
            Dimensionality to reduce the CLIP vision embedding.
        decoder_num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads in the decoder of CLIPSeg.
        decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        decoder_intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
        conditional_layer (`int`, *optional*, defaults to 0):
            The layer to use of the Transformer encoder whose activations will be combined with the condition
            embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
        use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
            Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
            segmentation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import CLIPSegConfig, CLIPSegModel

    >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegConfig()

    >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig

    >>> # Initializing a CLIPSegText and CLIPSegVision configuration
    >>> config_text = CLIPSegTextConfig()
    >>> config_vision = CLIPSegVisionConfig()

    >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
    ```r/   Nr   g/L
F@r      	   @      r   r   r	   r   Fc                    s  | dd }| dd }t jf | |d k	r|d kr:i }tf | }| D ]V\}}||krP||| krP|dkrP||krd| d| d}nd| d}t| qP|| |d k	rl|d kri }t	f | }d	|krd
d |d	  D |d	< | D ]`\}}||kr ||| kr |dkr ||krHd| d| d}nd| d}t| q || |d kri }td |d kri }td tf || _
t	f || _|| _|| _|| _|| _|| _|| _|	| _|
| _|| _d| _|| _d S )Ntext_config_dictvision_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]\}}t ||qS r)   )rC   ).0keyvaluer)   r)   r*   
<dictcomp>t  s     z*CLIPSegConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.zV`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.r   )popr   r   r   to_dictitemsr7   infoupdaterG   r0   rO   projection_dimlogit_scale_init_valueextract_layers
reduce_dimdecoder_num_attention_headsdecoder_attention_dropoutdecoder_hidden_actdecoder_intermediate_sizeconditional_layerr#   "use_complex_transposed_convolution)r%   r0   rO   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   r&   rU   rV   Z_text_config_dictrY   rZ   messageZ_vision_config_dictr'   r)   r*   r   6  sh    




"






zCLIPSegConfig.__init__r0   rO   c                 K   s   | f |  |  d|S )z
        Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
        model configuration.

        Returns:
            [`CLIPSegConfig`]: An instance of a configuration object
        rl   )r]   )r;   r0   rO   r&   r)   r)   r*   from_text_vision_configs  s    
z&CLIPSegConfig.from_text_vision_configs)r>   r?   r@   rA   r.   r   rB   r   rG   rm   rF   r)   r)   r'   r*   rP      s"   ?mrP   )rA   rD   typingr   Zconfiguration_utilsr   utilsr   Z
get_loggerr>   r7   r   rG   rP   r)   r)   r)   r*   <module>   s   
pi