U
    5Af.                     @   sR   d dl mZ ddlmZ ddlmZmZmZ eedddd	G d
d deZdS )    )Dict   )add_end_docstrings   )GenericTensorPipelinebuild_pipeline_init_argsTF)Zhas_tokenizerZsupports_binary_outputa  
        tokenize_kwargs (`dict`, *optional*):
                Additional dictionary of keyword arguments passed along to the tokenizer.
        return_tensors (`bool`, *optional*):
            If `True`, returns a tensor according to the specified framework, otherwise returns a list.c                       sR   e Zd ZdZdddZeeef dddZdd	 Z	dddZ
 fddZ  ZS )FeatureExtractionPipelinea  
    Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
    transformer, which can be used as features in downstream tasks.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction")
    >>> result = extractor("This is a simple test.", return_tensors=True)
    >>> result.shape  # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string.
    torch.Size([1, 8, 768])
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)

    This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
    `"feature-extraction"`.

    All models may be used for this pipeline. See a list of all models, including community-contributed models on
    [huggingface.co/models](https://huggingface.co/models).
    Nc                 K   sN   |d kri }|d k	r,d|kr$t d||d< |}i }|d k	rD||d< |i |fS )N
truncationz\truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)return_tensors)
ValueError)selfr
   tokenize_kwargsr   kwargsZpreprocess_paramsZpostprocess_params r   M/tmp/pip-unpacked-wheel-zw5xktn0/transformers/pipelines/feature_extraction.py_sanitize_parameters(   s    z.FeatureExtractionPipeline._sanitize_parameters)returnc                 K   s   | j |fd| ji|}|S )Nr   )	tokenizer	framework)r   inputsr   model_inputsr   r   r   
preprocess;   s    z$FeatureExtractionPipeline.preprocessc                 C   s   | j f |}|S )N)model)r   r   model_outputsr   r   r   _forward?   s    z"FeatureExtractionPipeline._forwardFc                 C   s@   |r|d S | j dkr"|d  S | j dkr<|d   S d S )Nr   pttf)r   tolistZnumpy)r   r   r   r   r   r   postprocessC   s    

z%FeatureExtractionPipeline.postprocessc                    s   t  j||S )a  
        Extract the features of the input(s).

        Args:
            args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of.

        Return:
            A nested list of `float`: The features computed by the model.
        )super__call__)r   argsr   	__class__r   r   r!   L   s    
z"FeatureExtractionPipeline.__call__)NNN)F)__name__
__module____qualname____doc__r   r   strr   r   r   r   r!   __classcell__r   r   r#   r   r	      s   	

	r	   N)	typingr   utilsr   baser   r   r   r	   r   r   r   r   <module>   s   
