U
    @f׊                     @   s  d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ d dlmZ d dlmZ d d	lmZ d d
lmZmZ d dlmZ d dlmZmZmZ d dlmZ d dlmZ d dl m!Z!m"Z" d dl#m$Z$m%Z% d dl&m'Z' d dl(m)Z)m*Z*m+Z+ G dd deZ,G dd de,edZ-G dd de,Z.G dd de.Z/G dd de.Z0G dd de,Z1d)d!d"Z2G d#d$ d$e,Z3G d%d& d&e3Z4G d'd( d(e3Z5d S )*    )Basic)cacheit)Tuple)call_highest_priority)global_parameters)AppliedUndefexpandMul)Integer)Eq)S	Singleton)ordered)DummySymbolWildsympify)Matrix)lcmfactor)IntervalIntersection)Idx)flattenis_sequenceiterablec                   @   s  e Zd ZdZdZdZedd Zdd Ze	dd	 Z
e	d
d Ze	dd Ze	dd Ze	dd Ze	dd Ze	dd Zedd Zdd Zdd Zdd Zdd Zd d! Zd"d# Zed$d%d& Zd'd( Zed)d*d+ Zd,d- Zd.d/ Zed0d1d2 Zd3d4 Z d5d6 Z!d:d8d9Z"d7S );SeqBasezBase class for sequencesT   c                 C   s*   z
| j }W n tk
r$   tj}Y nX |S )z[Return start (if possible) else S.Infinity.

        adapted from Set._infimum_key
        )startNotImplementedErrorr   Infinity)exprr     r$   :/tmp/pip-unpacked-wheel-6uje5nh9/sympy/series/sequences.py
_start_key    s
    
zSeqBase._start_keyc                 C   s   t | j|j}|j|jfS )zTReturns start and stop.

        Takes intersection over the two intervals.
        )r   intervalinfsup)selfotherr'   r$   r$   r%   _intersect_interval,   s    zSeqBase._intersect_intervalc                 C   s   t d|  dS )z&Returns the generator for the sequencez(%s).genNr!   r*   r$   r$   r%   gen4   s    zSeqBase.genc                 C   s   t d|  dS )z-The interval on which the sequence is definedz(%s).intervalNr-   r.   r$   r$   r%   r'   9   s    zSeqBase.intervalc                 C   s   t d|  dS ):The starting point of the sequence. This point is includedz
(%s).startNr-   r.   r$   r$   r%   r    >   s    zSeqBase.startc                 C   s   t d|  dS )z8The ending point of the sequence. This point is includedz	(%s).stopNr-   r.   r$   r$   r%   stopC   s    zSeqBase.stopc                 C   s   t d|  dS )zLength of the sequencez(%s).lengthNr-   r.   r$   r$   r%   lengthH   s    zSeqBase.lengthc                 C   s   dS )z-Returns a tuple of variables that are boundedr$   r$   r.   r$   r$   r%   	variablesM   s    zSeqBase.variablesc                    s    fdd j D S )aG  
        This method returns the symbols in the object, excluding those
        that take on a specific value (i.e. the dummy symbols).

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n, m
        >>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols
        {m}
        c                    s$   h | ]}|j  jD ]}|qqS r$   )free_symbols
differencer3   ).0ijr.   r$   r%   	<setcomp>`   s       z'SeqBase.free_symbols.<locals>.<setcomp>argsr.   r$   r.   r%   r4   R   s    zSeqBase.free_symbolsc                 C   s0   || j k s|| jkr&td|| jf | |S )z#Returns the coefficient at point ptzIndex %s out of bounds %s)r    r1   
IndexErrorr'   _eval_coeffr*   ptr$   r$   r%   coeffc   s    zSeqBase.coeffc                 C   s   t d| j d S )NzhThe _eval_coeff method should be added to%s to return coefficient so it is availablewhen coeff calls it.)r!   funcr>   r$   r$   r%   r=   j   s    zSeqBase._eval_coeffc                 C   s<   | j tjkr| j}n| j }| j tjkr,d}nd}|||  S )a  Returns the i'th point of a sequence.

        Explanation
        ===========

        If start point is negative infinity, point is returned from the end.
        Assumes the first point to be indexed zero.

        Examples
        =========

        >>> from sympy import oo
        >>> from sympy.series.sequences import SeqPer

        bounded

        >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(0)
        -10
        >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(5)
        -5

        End is at infinity

        >>> SeqPer((1, 2, 3), (0, oo))._ith_point(5)
        5

        Starts at negative infinity

        >>> SeqPer((1, 2, 3), (-oo, 0))._ith_point(5)
        -5
           )r    r   NegativeInfinityr1   )r*   r7   initialstepr$   r$   r%   
_ith_pointp   s     zSeqBase._ith_pointc                 C   s   dS )aI  
        Should only be used internally.

        Explanation
        ===========

        self._add(other) returns a new, term-wise added sequence if self
        knows how to add with other, otherwise it returns ``None``.

        ``other`` should only be a sequence object.

        Used within :class:`SeqAdd` class.
        Nr$   r*   r+   r$   r$   r%   _add   s    zSeqBase._addc                 C   s   dS )aS  
        Should only be used internally.

        Explanation
        ===========

        self._mul(other) returns a new, term-wise multiplied sequence if self
        knows how to multiply with other, otherwise it returns ``None``.

        ``other`` should only be a sequence object.

        Used within :class:`SeqMul` class.
        Nr$   rH   r$   r$   r%   _mul   s    zSeqBase._mulc                 C   s
   t | |S )a  
        Should be used when ``other`` is not a sequence. Should be
        defined to define custom behaviour.

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n
        >>> SeqFormula(n**2).coeff_mul(2)
        SeqFormula(2*n**2, (n, 0, oo))

        Notes
        =====

        '*' defines multiplication of sequences with sequences only.
        r	   rH   r$   r$   r%   	coeff_mul   s    zSeqBase.coeff_mulc                 C   s$   t |tstdt| t| |S )a4  Returns the term-wise addition of 'self' and 'other'.

        ``other`` should be a sequence.

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n
        >>> SeqFormula(n**2) + SeqFormula(n**3)
        SeqFormula(n**3 + n**2, (n, 0, oo))
        zcannot add sequence and %s
isinstancer   	TypeErrortypeSeqAddrH   r$   r$   r%   __add__   s    
zSeqBase.__add__rQ   c                 C   s   | | S Nr$   rH   r$   r$   r%   __radd__   s    zSeqBase.__radd__c                 C   s&   t |tstdt| t| | S )a7  Returns the term-wise subtraction of ``self`` and ``other``.

        ``other`` should be a sequence.

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n
        >>> SeqFormula(n**2) - (SeqFormula(n))
        SeqFormula(n**2 - n, (n, 0, oo))
        zcannot subtract sequence and %srL   rH   r$   r$   r%   __sub__   s    
zSeqBase.__sub__rT   c                 C   s
   |  | S rR   r$   rH   r$   r$   r%   __rsub__   s    zSeqBase.__rsub__c                 C   s
   |  dS )zNegates the sequence.

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n
        >>> -SeqFormula(n**2)
        SeqFormula(-n**2, (n, 0, oo))
        rB   )rK   r.   r$   r$   r%   __neg__   s    zSeqBase.__neg__c                 C   s$   t |tstdt| t| |S )a{  Returns the term-wise multiplication of 'self' and 'other'.

        ``other`` should be a sequence. For ``other`` not being a
        sequence see :func:`coeff_mul` method.

        Examples
        ========

        >>> from sympy import SeqFormula
        >>> from sympy.abc import n
        >>> SeqFormula(n**2) * (SeqFormula(n))
        SeqFormula(n**3, (n, 0, oo))
        zcannot multiply sequence and %s)rM   r   rN   rO   SeqMulrH   r$   r$   r%   __mul__  s    
zSeqBase.__mul__rX   c                 C   s   | | S rR   r$   rH   r$   r$   r%   __rmul__  s    zSeqBase.__rmul__c                 c   s*   t | jD ]}| |}| |V  q
d S rR   )ranger2   rG   r@   )r*   r7   r?   r$   r$   r%   __iter__  s    
zSeqBase.__iter__c                    st   t |tr |} |S t |trp|j|j }}|d krBd}|d krP j} fddt|||j	phdD S d S )Nr   c                    s   g | ]}   |qS r$   )r@   rG   )r6   r7   r.   r$   r%   
<listcomp>,  s     z'SeqBase.__getitem__.<locals>.<listcomp>rC   )
rM   intrG   r@   slicer    r1   r2   rZ   rF   )r*   indexr    r1   r$   r.   r%   __getitem__"  s    




zSeqBase.__getitem__Nc                    s<  ddl m   fdd| d| D }t|}|dkr@|d }nt||d }g }td|d D ]}d| }	g }
t|D ]}|
||||   qxt|
}| dkr` |t|||	 }||	krt	|ddd } qJg }
t||| D ]}|
||||   qt|
}|| t||	d kr`t	|ddd } qJq`|dkrX|S t|}|dkrrg dfS ||d  ||d   d||d  ||    }}t|d D ]n}||| ||  7 }t|| d D ]*}||| ||  ||| d   8 }q||| ||d   8 }q| t
|t
| fS dS )	a  
        Finds the shortest linear recurrence that satisfies the first n
        terms of sequence of order `\leq` ``n/2`` if possible.
        If ``d`` is specified, find shortest linear recurrence of order
        `\leq` min(d, n/2) if possible.
        Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the
        recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...``
        Returns ``[]`` if no recurrence is found.
        If gfvar is specified, also returns ordinary generating function as a
        function of gfvar.

        Examples
        ========

        >>> from sympy import sequence, sqrt, oo, lucas
        >>> from sympy.abc import n, x, y
        >>> sequence(n**2).find_linear_recurrence(10, 2)
        []
        >>> sequence(n**2).find_linear_recurrence(10)
        [3, -3, 1]
        >>> sequence(2**n).find_linear_recurrence(10)
        [2]
        >>> sequence(23*n**4+91*n**2).find_linear_recurrence(10)
        [5, -10, 10, -5, 1]
        >>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10)
        [1, 1]
        >>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30)
        [1/2, 1/2]
        >>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x)
        ([6, -5], 3*(5 - 21*x)/((x - 1)*(5*x - 1)))
        >>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x)
        ([1, 1], (x - 2)/(x**2 + x - 1))
        r   simplifyc                    s   g | ]} t |qS r$   )r   )r6   tra   r$   r%   r\   R  s     z2SeqBase.find_linear_recurrence.<locals>.<listcomp>N   rC   rB   )Zsympy.simplifyrb   lenminrZ   appendr   ZdetZLUsolver   r   )r*   ndZgfvarxZlxrZcoeffsll2Zmlistkmyr7   r8   r$   ra   r%   find_linear_recurrence/  sJ    "


2(zSeqBase.find_linear_recurrence)NN)#__name__
__module____qualname____doc__Zis_commutativeZ_op_prioritystaticmethodr&   r,   propertyr/   r'   r    r1   r2   r3   r4   r   r@   r=   rG   rI   rJ   rK   rQ   r   rS   rT   rU   rV   rX   rY   r[   r`   rq   r$   r$   r$   r%   r      sP   








,


r   c                   @   s8   e Zd ZdZedd Zedd Zdd Zdd	 Zd
S )EmptySequencea  Represents an empty sequence.

    The empty sequence is also available as a singleton as
    ``S.EmptySequence``.

    Examples
    ========

    >>> from sympy import EmptySequence, SeqPer
    >>> from sympy.abc import x
    >>> EmptySequence
    EmptySequence
    >>> SeqPer((1, 2), (x, 0, 10)) + EmptySequence
    SeqPer((1, 2), (x, 0, 10))
    >>> SeqPer((1, 2)) * EmptySequence
    EmptySequence
    >>> EmptySequence.coeff_mul(-1)
    EmptySequence
    c                 C   s   t jS rR   )r   EmptySetr.   r$   r$   r%   r'     s    zEmptySequence.intervalc                 C   s   t jS rR   )r   ZZeror.   r$   r$   r%   r2     s    zEmptySequence.lengthc                 C   s   | S )"See docstring of SeqBase.coeff_mulr$   )r*   r@   r$   r$   r%   rK     s    zEmptySequence.coeff_mulc                 C   s   t g S rR   )iterr.   r$   r$   r%   r[     s    zEmptySequence.__iter__N)	rr   rs   rt   ru   rw   r'   r2   rK   r[   r$   r$   r$   r%   rx   z  s   

rx   )	metaclassc                   @   sX   e Zd ZdZedd Zedd Zedd Zedd	 Zed
d Z	edd Z
dS )SeqExpra  Sequence expression class.

    Various sequences should inherit from this class.

    Examples
    ========

    >>> from sympy.series.sequences import SeqExpr
    >>> from sympy.abc import x
    >>> from sympy import Tuple
    >>> s = SeqExpr(Tuple(1, 2, 3), Tuple(x, 0, 10))
    >>> s.gen
    (1, 2, 3)
    >>> s.interval
    Interval(0, 10)
    >>> s.length
    11

    See Also
    ========

    sympy.series.sequences.SeqPer
    sympy.series.sequences.SeqFormula
    c                 C   s
   | j d S Nr   r:   r.   r$   r$   r%   r/     s    zSeqExpr.genc                 C   s   t | jd d | jd d S )NrC   rd   )r   r;   r.   r$   r$   r%   r'     s    zSeqExpr.intervalc                 C   s   | j jS rR   r'   r(   r.   r$   r$   r%   r      s    zSeqExpr.startc                 C   s   | j jS rR   r'   r)   r.   r$   r$   r%   r1     s    zSeqExpr.stopc                 C   s   | j | j d S NrC   r1   r    r.   r$   r$   r%   r2     s    zSeqExpr.lengthc                 C   s   | j d d fS )NrC   r   r:   r.   r$   r$   r%   r3     s    zSeqExpr.variablesN)rr   rs   rt   ru   rw   r/   r'   r    r1   r2   r3   r$   r$   r$   r%   r}     s   




r}   c                   @   sR   e Zd ZdZdddZedd Zedd Zd	d
 Zdd Z	dd Z
dd ZdS )SeqPera  
    Represents a periodic sequence.

    The elements are repeated after a given period.

    Examples
    ========

    >>> from sympy import SeqPer, oo
    >>> from sympy.abc import k

    >>> s = SeqPer((1, 2, 3), (0, 5))
    >>> s.periodical
    (1, 2, 3)
    >>> s.period
    3

    For value at a particular point

    >>> s.coeff(3)
    1

    supports slicing

    >>> s[:]
    [1, 2, 3, 1, 2, 3]

    iterable

    >>> list(s)
    [1, 2, 3, 1, 2, 3]

    sequence starts from negative infinity

    >>> SeqPer((1, 2, 3), (-oo, 0))[0:6]
    [1, 2, 3, 1, 2, 3]

    Periodic formulas

    >>> SeqPer((k, k**2, k**3), (k, 0, oo))[0:6]
    [0, 1, 8, 3, 16, 125]

    See Also
    ========

    sympy.series.sequences.SeqFormula
    Nc                 C   s$  t |}dd }d\}}}|d kr8||dtj  }}}t|trvt|dkrZ|\}}}nt|dkrv||}|\}}t|ttfr|d ks|d krt	dt
| |tjkr|tjkrt	dt |||f}t|trt tt|}nt	d	| t|d
 |d tjkrtjS t| ||S )Nc                 S   s(   | j }t| j dkr| S tdS d S )NrC   rn   )r4   re   popr   )
periodicalfreer$   r$   r%   _find_x  s    zSeqPer.__new__.<locals>._find_xNNNr      rd   Invalid limits given: %sz/Both the start and end valuecannot be unboundedz6invalid period %s should be something like e.g (1, 2) rC   )r   r   r"   r   r   re   rM   r   r   
ValueErrorstrrD   tupler   r   ry   rx   r   __new__)clsr   limitsr   rj   r    r1   r$   r$   r%   r     s0    


zSeqPer.__new__c                 C   s
   t | jS rR   )re   r/   r.   r$   r$   r%   period+  s    zSeqPer.periodc                 C   s   | j S rR   r/   r.   r$   r$   r%   r   /  s    zSeqPer.periodicalc                 C   sF   | j tjkr| j| | j }n|| j  | j }| j| | jd |S r~   )r    r   rD   r1   r   r   subsr3   )r*   r?   idxr$   r$   r%   r=   3  s    zSeqPer._eval_coeffc                 C   s   t |tr| j| j }}|j|j }}t||}g }t|D ]*}|||  }	|||  }
||	|
  q<| |\}}t|| jd ||fS dS zSee docstring of SeqBase._addr   N	rM   r   r   r   r   rZ   rg   r,   r3   r*   r+   Zper1Zlper1Zper2Zlper2Z
per_lengthZnew_perrj   Zele1Zele2r    r1   r$   r$   r%   rI   :  s    

zSeqPer._addc                 C   s   t |tr| j| j }}|j|j }}t||}g }t|D ]*}|||  }	|||  }
||	|
  q<| |\}}t|| jd ||fS dS zSee docstring of SeqBase._mulr   Nr   r   r$   r$   r%   rJ   K  s    

zSeqPer._mulc                    s,   t    fdd| jD }t|| jd S )rz   c                    s   g | ]}|  qS r$   r$   r6   rj   r@   r$   r%   r\   _  s     z$SeqPer.coeff_mul.<locals>.<listcomp>rC   )r   r   r   r;   )r*   r@   Zperr$   r   r%   rK   \  s    zSeqPer.coeff_mul)N)rr   rs   rt   ru   r   rw   r   r   r=   rI   rJ   rK   r$   r$   r$   r%   r     s   0
(

r   c                   @   sN   e Zd ZdZdddZedd Zdd Zd	d
 Zdd Z	dd Z
dd ZdS )
SeqFormulaaf  
    Represents sequence based on a formula.

    Elements are generated using a formula.

    Examples
    ========

    >>> from sympy import SeqFormula, oo, Symbol
    >>> n = Symbol('n')
    >>> s = SeqFormula(n**2, (n, 0, 5))
    >>> s.formula
    n**2

    For value at a particular point

    >>> s.coeff(3)
    9

    supports slicing

    >>> s[:]
    [0, 1, 4, 9, 16, 25]

    iterable

    >>> list(s)
    [0, 1, 4, 9, 16, 25]

    sequence starts from negative infinity

    >>> SeqFormula(n**2, (-oo, 0))[0:6]
    [0, 1, 4, 9, 16, 25]

    See Also
    ========

    sympy.series.sequences.SeqPer
    Nc                 C   s   t |}dd }d\}}}|d kr8||dtj  }}}t|trvt|dkrZ|\}}}nt|dkrv||}|\}}t|ttfr|d ks|d krt	dt
| |tjkr|tjkrt	dt |||f}t|d	 |d tjkrtjS t| ||S )
Nc                 S   s6   | j }t|dkr| S |s&tdS td|  d S )NrC   rn   z specify dummy variables for %s. If the formula contains more than one free symbol, a dummy variable should be supplied explicitly e.g., SeqFormula(m*n**2, (n, 0, 5)))r4   re   r   r   r   )formular   r$   r$   r%   r     s    z#SeqFormula.__new__.<locals>._find_xr   r   r   rd   r   z0Both the start and end value cannot be unboundedrC   )r   r   r"   r   r   re   rM   r   r   r   r   rD   r   ry   rx   r   r   )r   r   r   r   rj   r    r1   r$   r$   r%   r     s&    

zSeqFormula.__new__c                 C   s   | j S rR   r   r.   r$   r$   r%   r     s    zSeqFormula.formulac                 C   s   | j d }| j||S r~   )r3   r   r   )r*   r?   ri   r$   r$   r%   r=     s    
zSeqFormula._eval_coeffc           	      C   s`   t |tr\| j| jd  }}|j|jd  }}|||| }| |\}}t||||fS dS r   rM   r   r   r3   r   r,   	r*   r+   Zform1Zv1Zform2Zv2r   r    r1   r$   r$   r%   rI     s    
zSeqFormula._addc           	      C   s`   t |tr\| j| jd  }}|j|jd  }}|||| }| |\}}t||||fS dS r   r   r   r$   r$   r%   rJ     s    
zSeqFormula._mulc                 C   s"   t |}| j| }t|| jd S )rz   rC   )r   r   r   r;   )r*   r@   r   r$   r$   r%   rK     s    
zSeqFormula.coeff_mulc                 O   s   t t| jf||| jd S r   )r   r   r   r;   )r*   r;   kwargsr$   r$   r%   r     s    zSeqFormula.expand)N)rr   rs   rt   ru   r   rw   r   r=   rI   rJ   rK   r   r$   r$   r$   r%   r   c  s   (
'
		r   c                   @   s   e Zd ZdZdddZedd Zedd	 Zed
d Zedd Z	edd Z
edd Zedd Zedd Zedd Zdd Zdd ZdS )RecursiveSeqa  
    A finite degree recursive sequence.

    Explanation
    ===========

    That is, a sequence a(n) that depends on a fixed, finite number of its
    previous values. The general form is

        a(n) = f(a(n - 1), a(n - 2), ..., a(n - d))

    for some fixed, positive integer d, where f is some function defined by a
    SymPy expression.

    Parameters
    ==========

    recurrence : SymPy expression defining recurrence
        This is *not* an equality, only the expression that the nth term is
        equal to. For example, if :code:`a(n) = f(a(n - 1), ..., a(n - d))`,
        then the expression should be :code:`f(a(n - 1), ..., a(n - d))`.

    yn : applied undefined function
        Represents the nth term of the sequence as e.g. :code:`y(n)` where
        :code:`y` is an undefined function and `n` is the sequence index.

    n : symbolic argument
        The name of the variable that the recurrence is in, e.g., :code:`n` if
        the recurrence function is :code:`y(n)`.

    initial : iterable with length equal to the degree of the recurrence
        The initial values of the recurrence.

    start : start value of sequence (inclusive)

    Examples
    ========

    >>> from sympy import Function, symbols
    >>> from sympy.series.sequences import RecursiveSeq
    >>> y = Function("y")
    >>> n = symbols("n")
    >>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1])

    >>> fib.coeff(3) # Value at a particular point
    2

    >>> fib[:6] # supports slicing
    [0, 1, 1, 2, 3, 5]

    >>> fib.recurrence # inspect recurrence
    Eq(y(n), y(n - 2) + y(n - 1))

    >>> fib.degree # automatically determine degree
    2

    >>> for x in zip(range(10), fib): # supports iteration
    ...     print(x)
    (0, 0)
    (1, 1)
    (2, 1)
    (3, 2)
    (4, 3)
    (5, 5)
    (6, 8)
    (7, 13)
    (8, 21)
    (9, 34)

    See Also
    ========

    sympy.series.sequences.SeqFormula

    Nr   c                    s^  t |tstd|t |tr(|js6td||j|fkrJtd|jtd|fd}d}|	}|D ]f}	t
|	jdkrtd|	jd || | }
|
 r|
jr|
dk std	|	|
 |krp|
 }qp|sd
d t|D }t
||krtdt|}t  tdd |D  }t| |||| } fddt|D |_||_|S )NzErecurrence sequence must be an applied undefined function, found `{}`z0recurrence variable must be a symbol, found `{}`z)recurrence sequence does not match symbolrn   )excluder   rC   z)Recurrence should be in a single variablezDRecurrence should have constant, negative, integer shifts (found {})c                 S   s   g | ]}t d |qS )zc_{})r   format)r6   rn   r$   r$   r%   r\   G  s     z(RecursiveSeq.__new__.<locals>.<listcomp>z)Number of initial terms must equal degreec                 s   s   | ]}t |V  qd S rR   r   r   r$   r$   r%   	<genexpr>O  s     z'RecursiveSeq.__new__.<locals>.<genexpr>c                    s   i | ]\}} | |qS r$   r$   )r6   rn   initr    rp   r$   r%   
<dictcomp>S  s     
 z(RecursiveSeq.__new__.<locals>.<dictcomp>)rM   r   rN   r   r   Z	is_symbolr;   rA   r   findre   matchZis_constant
is_integerrZ   r   r   r   r   r   	enumeratecachedegree)r   
recurrenceynrh   rE   r    rn   r   Zprev_ysZprev_yshiftseqr$   r   r%   r   #  sF    


zRecursiveSeq.__new__c                 C   s
   | j d S zEquation defining recurrence.r   r:   r.   r$   r$   r%   _recurrenceX  s    zRecursiveSeq._recurrencec                 C   s   t | j| jd S r   )r   r   r;   r.   r$   r$   r%   r   ]  s    zRecursiveSeq.recurrencec                 C   s
   | j d S )z*Applied function representing the nth termrC   r:   r.   r$   r$   r%   r   b  s    zRecursiveSeq.ync                 C   s   | j jS )z3Undefined function for the nth term of the sequence)r   rA   r.   r$   r$   r%   rp   g  s    zRecursiveSeq.yc                 C   s
   | j d S )zSequence index symbolrd   r:   r.   r$   r$   r%   rh   l  s    zRecursiveSeq.nc                 C   s
   | j d S )z"The initial values of the sequencer   r:   r.   r$   r$   r%   rE   q  s    zRecursiveSeq.initialc                 C   s
   | j d S )r0      r:   r.   r$   r$   r%   r    v  s    zRecursiveSeq.startc                 C   s   t jS )z&The ending point of the sequence. (oo))r   r"   r.   r$   r$   r%   r1   {  s    zRecursiveSeq.stopc                 C   s   | j tjfS )z&Interval on which sequence is defined.)r    r   r"   r.   r$   r$   r%   r'     s    zRecursiveSeq.intervalc                 C   s   || j  t| jk r$| j| | S tt| j|d D ]<}| j | }| j| j|i}|| j}|| j| |< q8| j| | j |  S r   )r    re   r   rp   rZ   r   Zxreplacerh   )r*   r_   currentZ	seq_indexZcurrent_recurrenceZnew_termr$   r$   r%   r=     s    
zRecursiveSeq._eval_coeffc                 c   s    | j }| |V  |d7 }qd S r   )r    r=   )r*   r_   r$   r$   r%   r[     s    zRecursiveSeq.__iter__)Nr   )rr   rs   rt   ru   r   rw   r   r   r   rp   rh   rE   r    r1   r'   r=   r[   r$   r$   r$   r%   r     s,   L
5








r   Nc                 C   s*   t | } t| trt| |S t| |S dS )a  
    Returns appropriate sequence object.

    Explanation
    ===========

    If ``seq`` is a SymPy sequence, returns :class:`SeqPer` object
    otherwise returns :class:`SeqFormula` object.

    Examples
    ========

    >>> from sympy import sequence
    >>> from sympy.abc import n
    >>> sequence(n**2, (n, 0, 5))
    SeqFormula(n**2, (n, 0, 5))
    >>> sequence((1, 2, 3), (n, 0, 5))
    SeqPer((1, 2, 3), (n, 0, 5))

    See Also
    ========

    sympy.series.sequences.SeqPer
    sympy.series.sequences.SeqFormula
    N)r   r   r   r   r   )r   r   r$   r$   r%   sequence  s    

r   c                   @   sX   e Zd ZdZedd Zedd Zedd Zedd	 Zed
d Z	edd Z
dS )	SeqExprOpa  
    Base class for operations on sequences.

    Examples
    ========

    >>> from sympy.series.sequences import SeqExprOp, sequence
    >>> from sympy.abc import n
    >>> s1 = sequence(n**2, (n, 0, 10))
    >>> s2 = sequence((1, 2, 3), (n, 5, 10))
    >>> s = SeqExprOp(s1, s2)
    >>> s.gen
    (n**2, (1, 2, 3))
    >>> s.interval
    Interval(5, 10)
    >>> s.length
    6

    See Also
    ========

    sympy.series.sequences.SeqAdd
    sympy.series.sequences.SeqMul
    c                 C   s   t dd | jD S )zjGenerator for the sequence.

        returns a tuple of generators of all the argument sequences.
        c                 s   s   | ]}|j V  qd S rR   r   r6   ar$   r$   r%   r     s     z SeqExprOp.gen.<locals>.<genexpr>)r   r;   r.   r$   r$   r%   r/     s    zSeqExprOp.genc                 C   s   t dd | jD  S )zeSequence is defined on the intersection
        of all the intervals of respective sequences
        c                 s   s   | ]}|j V  qd S rR   r'   r   r$   r$   r%   r     s     z%SeqExprOp.interval.<locals>.<genexpr>)r   r;   r.   r$   r$   r%   r'     s    zSeqExprOp.intervalc                 C   s   | j jS rR   r   r.   r$   r$   r%   r      s    zSeqExprOp.startc                 C   s   | j jS rR   r   r.   r$   r$   r%   r1     s    zSeqExprOp.stopc                 C   s   t tdd | jD S )z%Cumulative of all the bound variablesc                 S   s   g | ]
}|j qS r$   )r3   r   r$   r$   r%   r\     s     z'SeqExprOp.variables.<locals>.<listcomp>)r   r   r;   r.   r$   r$   r%   r3     s    zSeqExprOp.variablesc                 C   s   | j | j d S r   r   r.   r$   r$   r%   r2     s    zSeqExprOp.lengthN)rr   rs   rt   ru   rw   r/   r'   r    r1   r3   r2   r$   r$   r$   r%   r     s   




r   c                   @   s,   e Zd ZdZdd Zedd Zdd ZdS )	rP   a  Represents term-wise addition of sequences.

    Rules:
        * The interval on which sequence is defined is the intersection
          of respective intervals of sequences.
        * Anything + :class:`EmptySequence` remains unchanged.
        * Other rules are defined in ``_add`` methods of sequence classes.

    Examples
    ========

    >>> from sympy import EmptySequence, oo, SeqAdd, SeqPer, SeqFormula
    >>> from sympy.abc import n
    >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
    SeqPer((1, 2), (n, 0, oo))
    >>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
    EmptySequence
    >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo)))
    SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
    >>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2))
    SeqFormula(n**3 + n**2, (n, 0, oo))

    See Also
    ========

    sympy.series.sequences.SeqMul
    c                    s   | dtj}t|} fdd  |}dd |D }|sBtjS tdd |D  tjkr`tjS |rnt	|S tt
|tj}tj| f| S )Nevaluatec                    sP   t | tr,t | tr&tt | jg S | gS t| rDtt | g S tdd S Nz2Input must be Sequences or  iterables of Sequences)rM   r   rP   summapr;   r   rN   arg_flattenr$   r%   r      s    

z SeqAdd.__new__.<locals>._flattenc                 S   s   g | ]}|t jk	r|qS r$   )r   rx   r   r$   r$   r%   r\   ,  s     
 z"SeqAdd.__new__.<locals>.<listcomp>c                 s   s   | ]}|j V  qd S rR   r   r   r$   r$   r%   r   2  s     z!SeqAdd.__new__.<locals>.<genexpr>)getr   r   listr   rx   r   ry   rP   reducer   r   r&   r   r   r   r;   r   r   r$   r   r%   r     s    

zSeqAdd.__new__c                    s   d}|r|t | D ]h\} d}t | D ]F\}||kr6q$ }|dk	r$ fdd| D }||  qlq$|r|}  qqqt| dkr|  S t| ddS dS )a  Simplify :class:`SeqAdd` using known rules.

        Iterates through all pairs and ask the constituent
        sequences if they can simplify themselves with any other constituent.

        Notes
        =====

        adapted from ``Union.reduce``

        TFNc                    s   g | ]}| fkr|qS r$   r$   r   src   r$   r%   r\   U  s      z!SeqAdd.reduce.<locals>.<listcomp>rC   r   )r   rI   rg   re   r   rP   r;   new_argsZid1Zid2Znew_seqr$   r   r%   r   =  s$    

zSeqAdd.reducec                    s   t  fdd| jD S )z9adds up the coefficients of all the sequences at point ptc                 3   s   | ]}|  V  qd S rR   r   r   r?   r$   r%   r   c  s     z%SeqAdd._eval_coeff.<locals>.<genexpr>)r   r;   r>   r$   r   r%   r=   a  s    zSeqAdd._eval_coeffNrr   rs   rt   ru   r   rv   r   r=   r$   r$   r$   r%   rP     s
   $
#rP   c                   @   s,   e Zd ZdZdd Zedd Zdd ZdS )	rW   a'  Represents term-wise multiplication of sequences.

    Explanation
    ===========

    Handles multiplication of sequences only. For multiplication
    with other objects see :func:`SeqBase.coeff_mul`.

    Rules:
        * The interval on which sequence is defined is the intersection
          of respective intervals of sequences.
        * Anything \* :class:`EmptySequence` returns :class:`EmptySequence`.
        * Other rules are defined in ``_mul`` methods of sequence classes.

    Examples
    ========

    >>> from sympy import EmptySequence, oo, SeqMul, SeqPer, SeqFormula
    >>> from sympy.abc import n
    >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
    EmptySequence
    >>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
    EmptySequence
    >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2))
    SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
    >>> SeqMul(SeqFormula(n**3), SeqFormula(n**2))
    SeqFormula(n**5, (n, 0, oo))

    See Also
    ========

    sympy.series.sequences.SeqAdd
    c                    s   | dtj}t|} fdd  |}|s4tjS tdd |D  tjkrRtjS |r`t	|S tt
|tj}tj| f| S )Nr   c                    sR   t | tr.t | tr&tt | jg S | gS nt| rFtt | g S tdd S r   )rM   r   rW   r   r   r;   r   rN   r   r   r$   r%   r     s    

z SeqMul.__new__.<locals>._flattenc                 s   s   | ]}|j V  qd S rR   r   r   r$   r$   r%   r     s     z!SeqMul.__new__.<locals>.<genexpr>)r   r   r   r   r   rx   r   ry   rW   r   r   r   r&   r   r   r   r$   r   r%   r     s    

zSeqMul.__new__c                    s   d}|r|t | D ]h\} d}t | D ]F\}||kr6q$ }|dk	r$ fdd| D }||  qlq$|r|}  qqqt| dkr|  S t| ddS dS )a.  Simplify a :class:`SeqMul` using known rules.

        Explanation
        ===========

        Iterates through all pairs and ask the constituent
        sequences if they can simplify themselves with any other constituent.

        Notes
        =====

        adapted from ``Union.reduce``

        TFNc                    s   g | ]}| fkr|qS r$   r$   r   r   r$   r%   r\     s      z!SeqMul.reduce.<locals>.<listcomp>rC   r   )r   rJ   rg   re   r   rW   r   r$   r   r%   r     s$    

zSeqMul.reducec                 C   s"   d}| j D ]}|||9 }q
|S )z<multiplies the coefficients of all the sequences at point ptrC   )r;   r@   )r*   r?   valr   r$   r$   r%   r=     s    
zSeqMul._eval_coeffNr   r$   r$   r$   r%   rW   f  s
   ""
&rW   )N)6Zsympy.core.basicr   Zsympy.core.cacher   Zsympy.core.containersr   Zsympy.core.decoratorsr   Zsympy.core.parametersr   Zsympy.core.functionr   r   Zsympy.core.mulr
   Zsympy.core.numbersr   Zsympy.core.relationalr   Zsympy.core.singletonr   r   Zsympy.core.sortingr   Zsympy.core.symbolr   r   r   Zsympy.core.sympifyr   Zsympy.matricesr   Zsympy.polysr   r   Zsympy.sets.setsr   r   Zsympy.tensor.indexedr   Zsympy.utilities.iterablesr   r   r   r   rx   r}   r   r   r   r   r   rP   rW   r$   r$   r$   r%   <module>   s>     b%3 s F
':j